Email updates

Keep up to date with the latest news and content from IJBNPA and BioMed Central.

Open Access Research

How many days of monitoring predict physical activity and sedentary behaviour in older adults?

Teresa L Hart1, Ann M Swartz2, Susan E Cashin2 and Scott J Strath2*

Author Affiliations

1 Department of Health Sciences, Arizona State University, Phoenix, Arizona, USA

2 Department of Human Movement Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, USA

For all author emails, please log on.

International Journal of Behavioral Nutrition and Physical Activity 2011, 8:62  doi:10.1186/1479-5868-8-62

Published: 16 June 2011

Abstract

Background

The number of days of pedometer or accelerometer data needed to reliably assess physical activity (PA) is important for research that examines the relationship with health. While this important research has been completed in young to middle-aged adults, data is lacking in older adults. Further, data determining the number of days of self-reports PA data is also void. The purpose of this study was to examine the number of days needed to predict habitual PA and sedentary behaviour across pedometer, accelerometer, and physical activity log (PA log) data in older adults.

Methods

Participants (52 older men and women; age = 69.3 ± 7.4 years, range= 55-86 years) wore a Yamax Digiwalker SW-200 pedometer and an ActiGraph 7164 accelerometer while completing a PA log for 21 consecutive days. Mean differences each instrument and intensity between days of the week were examined using separate repeated measures analysis of variance for with pairwise comparisons. Spearman-Brown Prophecy Formulae based on Intraclass Correlations of .80, .85, .90 and .95 were used to predict the number of days of accelerometer or pedometer wear or PA log daily records needed to represent total PA, light PA, moderate-to-vigorous PA, and sedentary behaviour.

Results

Results of this study showed that three days of accelerometer data, four days of pedometer data, or four days of completing PA logs are needed to accurately predict PA levels in older adults. When examining time spent in specific intensities of PA, fewer days of data are needed for accurate prediction of time spent in that activity for ActiGraph but more for the PA log. To accurately predict average daily time spent in sedentary behaviour, five days of ActiGraph data are needed.

Conclusions

The number days of objective (pedometer and ActiGraph) and subjective (PA log) data needed to accurately estimate daily PA in older adults was relatively consistent. Despite no statistical differences between days for total PA by the pedometer and ActiGraph, the magnitude of differences between days suggests that day of the week cannot be completely ignored in the design and analysis of PA studies that involve < 7-day monitoring protocols for these instruments. More days of accelerometer data were needed to determine typical sedentary behaviour than PA level in this population of older adults.