Email updates

Keep up to date with the latest news and content from IJBNPA and BioMed Central.

Open Access Highly Accessed Debate

A chaotic view of behavior change: a quantum leap for health promotion

Ken Resnicow1* and Roger Vaughan2

Author affiliations

1 University of Michigan, Department of Health Education and Health Behavior, School of Public Health, Ann Arbor, MI, USA

2 Department of Biostatistics, Columbia University, 722 West 168th Street, 6th Floor, New York, NY 10032, USA

For all author emails, please log on.

Citation and License

International Journal of Behavioral Nutrition and Physical Activity 2006, 3:25  doi:10.1186/1479-5868-3-25

Published: 12 September 2006

Abstract

Background

The study of health behavior change, including nutrition and physical activity behaviors, has been rooted in a cognitive-rational paradigm. Change is conceptualized as a linear, deterministic process where individuals weigh pros and cons, and at the point at which the benefits outweigh the cost change occurs. Consistent with this paradigm, the associated statistical models have almost exclusively assumed a linear relationship between psychosocial predictors and behavior. Such a perspective however, fails to account for non-linear, quantum influences on human thought and action. Consider why after years of false starts and failed attempts, a person succeeds at increasing their physical activity, eating healthier or losing weight. Or, why after years of success a person relapses. This paper discusses a competing view of health behavior change that was presented at the 2006 annual ISBNPA meeting in Boston.

Discussion

Rather than viewing behavior change from a linear perspective it can be viewed as a quantum event that can be understood through the lens of Chaos Theory and Complex Dynamic Systems. Key principles of Chaos Theory and Complex Dynamic Systems relevant to understanding health behavior change include: 1) Chaotic systems can be mathematically modeled but are nearly impossible to predict; 2) Chaotic systems are sensitive to initial conditions; 3) Complex Systems involve multiple component parts that interact in a nonlinear fashion; and 4) The results of Complex Systems are often greater than the sum of their parts. Accordingly, small changes in knowledge, attitude, efficacy, etc may dramatically alter motivation and behavioral outcomes. And the interaction of such variables can yield almost infinite potential patterns of motivation and behavior change. In the linear paradigm unaccounted for variance is generally relegated to the catch all "error" term, when in fact such "error" may represent the chaotic component of the process. The linear and chaotic paradigms are however, not mutually exclusive, as behavior change may include both chaotic and cognitive processes. Studies of addiction suggest that many decisions to change are quantum rather than planned events; motivation arrives as opposed to being planned. Moreover, changes made through quantum processes appear more enduring than those that involve more rational, planned processes. How such processes may apply to nutrition and physical activity behavior and related interventions merits examination.